Centre de Documentation HELHa Tournai - Mouscron
Heures d'ouverture (période scolaire)
Après identification sur connected (ID et mot de passe), les membres de la Helha ont l'accès à Cinahl et à Cairn en passant par l'onglet "Bases de données" de ce catalogue et en cliquant sur le lien d'accès.
Tournai | Mouscron |
- lundi : 9h30-12h30 et 13h00-17h00 - mardi: 9h00-12h30 et 13h00-17h00 - mercredi: 9h00-12h30 et 13h00-17h30 - jeudi: 9h00-12h30 et 13h00-17h00 - vendredi: 09h00-17h00 | - lundi: 9h00 à 12h30 et 13h00 à 17h15 - mardi: 13h00 à 17h15 - mercredi: 13h00 à 17h15 - jeudi : 13h00 à 17h15 - vendredi: 13h00 à 17h00 |
Semaine du 18/11 à Tournai : Fermé mardi 19/11 en après-midi et jeudi 21/11 en matinée. Fermé mercredi à 17h00. Fermé vendredi entre 12 et 13h00.
Semaine du 25/11 à Tournai : Fermé vendredi 29/11 en matinée.
Semaine du 02/12 à Tournai : Horaire habituel.
Semaine du 18/11 à Mouscron : Horaire habituel
Semaine du 25/11 à Mouscron : Lundi: ouverture à 10h30.
Semaine du 11/11 à Mouscron : Fermé lundi (armistice)
Détail de l'auteur
Auteur Boris Marchand |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Détection des infections du site opératoire par data mining / Julie Lizon in Hygiènes, Vol. XXV, 6 (Décembre 2017)
[article]
Titre : Détection des infections du site opératoire par data mining : quelle performance ? Type de document : texte imprimé Auteurs : Julie Lizon ; Boris Marchand ; Nicolas Jay ; Arnaud Florentin Année de publication : 2017 Article en page(s) : p. 351-358 Langues : Français (fre) Catégories : Alpha
C:Chirurgie ; C:Cicatrice ; F:Facteur prédictif ; H:Hygiène hospitalière ; I:Infection ; I:Infirmière hygiéniste ; S:SurveillanceRésumé :
Notre étude a pour objectif d’évaluer l’apport, par rapport au système actuel, des méthodes de data mining (DM) et des données issues du programme de médicalisation des systèmes d’information, pour détecter les infections du site opératoire (ISO). Matériel et méthode. Une étude de cohorte rétrospective a été établie, incluant 3 900 patients ayant été opérés entre le 1er janvier et le 31 août 2015 au centre hospitalier régional universitaire de Nancy. Le gold standard était le diagnostic d’ISO posé par les chirurgiens dans les 30 jours postopératoires. Les modèles de prédiction des ISO ont été construits grâce à deux méthodes de DM : les forêts aléatoires et les modèles adaptatifs (AdaBoost). Les performances des modèles ont été comparées. Résultats. L’incidence des ISO était de 4,92 %. Les sensibilités et spécificités des modèles de détection étaient respectivement de : 76 % et 93 % pour l’algorithme actuel, 81,4 % et 97,8 % pour le modèle de forêt aléatoire, 79,7 % et 97,7 % pour le modèle AdaBoost. Les deux modèles de DM sont plus performants que l’actuel tant pour l’aire sous la courbe (p < 10-5), que pour le Net Reclassification Improvement (p < 10-3), ainsi que pour le taux d’erreurs global (3 % versus 13 %). Conclusion. Les modèles de prédiction construits par DM ont montré chacun une meilleure performance en matière de détection des ISO. Leur utilisation en routine est possible mais nécessite au préalable leur validation sur un échantillon indépendant.Permalink : http://cdocs.helha.be/pmbtournai/opac_css/index.php?lvl=notice_display&id=36943
in Hygiènes > Vol. XXV, 6 (Décembre 2017) . - p. 351-358[article] Détection des infections du site opératoire par data mining : quelle performance ? [texte imprimé] / Julie Lizon ; Boris Marchand ; Nicolas Jay ; Arnaud Florentin . - 2017 . - p. 351-358.
Langues : Français (fre)
in Hygiènes > Vol. XXV, 6 (Décembre 2017) . - p. 351-358
Catégories : Alpha
C:Chirurgie ; C:Cicatrice ; F:Facteur prédictif ; H:Hygiène hospitalière ; I:Infection ; I:Infirmière hygiéniste ; S:SurveillanceRésumé :
Notre étude a pour objectif d’évaluer l’apport, par rapport au système actuel, des méthodes de data mining (DM) et des données issues du programme de médicalisation des systèmes d’information, pour détecter les infections du site opératoire (ISO). Matériel et méthode. Une étude de cohorte rétrospective a été établie, incluant 3 900 patients ayant été opérés entre le 1er janvier et le 31 août 2015 au centre hospitalier régional universitaire de Nancy. Le gold standard était le diagnostic d’ISO posé par les chirurgiens dans les 30 jours postopératoires. Les modèles de prédiction des ISO ont été construits grâce à deux méthodes de DM : les forêts aléatoires et les modèles adaptatifs (AdaBoost). Les performances des modèles ont été comparées. Résultats. L’incidence des ISO était de 4,92 %. Les sensibilités et spécificités des modèles de détection étaient respectivement de : 76 % et 93 % pour l’algorithme actuel, 81,4 % et 97,8 % pour le modèle de forêt aléatoire, 79,7 % et 97,7 % pour le modèle AdaBoost. Les deux modèles de DM sont plus performants que l’actuel tant pour l’aire sous la courbe (p < 10-5), que pour le Net Reclassification Improvement (p < 10-3), ainsi que pour le taux d’erreurs global (3 % versus 13 %). Conclusion. Les modèles de prédiction construits par DM ont montré chacun une meilleure performance en matière de détection des ISO. Leur utilisation en routine est possible mais nécessite au préalable leur validation sur un échantillon indépendant.Permalink : http://cdocs.helha.be/pmbtournai/opac_css/index.php?lvl=notice_display&id=36943 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité T007575 HYG Revue Tournai Soins infirmiers (T) Disponible