Centre de documentation HELHa Gosselies
Mise à jour du 27/11/2024
HORAIRE D'OUVERTURE :
Mardi : 8h00-18h00
Mercredi : 8h00-18h00
Jeudi : 8h00-18h00
Vendredi : 8h00-16h00
ATTENTION ! Le centre de documentation est fermé durant les congés et vacances scolaires, et fermera à midi le 6 et le 12 décembre
Bienvenue sur le catalogue du centre de documentation du domaine Education de la HELHa - Gosselies
Certains documents sont accompagnés de compléments numériques, Vous devez être authentifié avec vos identifiants HELHa pour y avoir accès
Rappel : Prêt de 5 documents par catégorie maximum (hors étiquettes jaunes et TFE), pour 15 jours (prolongation possible sur demande).
Prêt strictement personnel
Amendes : 20c/jour ouvrable/livre.
Attention : pas plus de 3 outils par catégorie sur la même thématique (ex : Saint Nicolas, les fractions, les animaux de la ferme, ...)
Résultat de la recherche
8 résultat(s) recherche sur le mot-clé 'schème'
Ajouter le résultat dans votre panier Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche
Calcul'As Zador / Stéphane Hoeben
Titre : Calcul'As Zador Type de document : Jeux Auteurs : Stéphane Hoeben, Concepteur Editeur : Floreffe : Editions Atzéo Année de publication : [s.d.] ISBN/ISSN/EAN : 5411068300813 Note générale : - A partir de 2 joueurs
- De 4 à 7 ans
- Entre 5 et 10 minutes par partieLangues : Français (fre) Mots-clés : calcul comptage schème 6 nombre quantité dénombrement égalité Index. décimale : Ludothèque Résumé : Ce jeu est conçu
pour que les enfants se construisent des images mentales des nombres jusque 6 ;
pour qu’ils manipulent des schèmes différents (3 variétés) ;
pour qu’ils comparent des quantités ;
pour qu’ils découvrent la notion d’égalité ;
pour qu’ils quittent petit à petit le comptage ;
pour qu’ils soient prêts à apprendre à calculer en 1ère année (et après) avec les cartes « Minor » et les cartes « Trezor »Note de contenu : - A - 13 cartes « égalité »
- B - 54 cartes (avec UN « Zador » au verso)
- C - 12 cartes (avec DEUX « Zador » au verso)
- D - 31 cartes « dés » (avec TROIS « Zador » au verso)
- 1 règle du jeuPermalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3214 Calcul'As Zador [Jeux] / Stéphane Hoeben, Concepteur . - Floreffe (Rue Arthur Patiny, 16, 5150) : Editions Atzéo, [s.d.].
ISSN : 5411068300813
- A partir de 2 joueurs
- De 4 à 7 ans
- Entre 5 et 10 minutes par partie
Langues : Français (fre)
Mots-clés : calcul comptage schème 6 nombre quantité dénombrement égalité Index. décimale : Ludothèque Résumé : Ce jeu est conçu
pour que les enfants se construisent des images mentales des nombres jusque 6 ;
pour qu’ils manipulent des schèmes différents (3 variétés) ;
pour qu’ils comparent des quantités ;
pour qu’ils découvrent la notion d’égalité ;
pour qu’ils quittent petit à petit le comptage ;
pour qu’ils soient prêts à apprendre à calculer en 1ère année (et après) avec les cartes « Minor » et les cartes « Trezor »Note de contenu : - A - 13 cartes « égalité »
- B - 54 cartes (avec UN « Zador » au verso)
- C - 12 cartes (avec DEUX « Zador » au verso)
- D - 31 cartes « dés » (avec TROIS « Zador » au verso)
- 1 règle du jeuPermalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3214 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20266 Ludo MATH Jeu Centre de documentation HELHa - Gosselies LUDOTHEQUE Inventaire 2023
DisponibleCarrément Math 1 : Mon référentiel / Christelle Collard
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité G004715 51.3 CAR Livre Centre de documentation HELHa - Gosselies 51 Enseignement des mathématiques Inventaire 2023 Consultable uniquement sur place
Exclu du prêtComprendre l' enfant : comportement, motifs, pensée / Jérôme Kagan
Titre : Comprendre l' enfant : comportement, motifs, pensée Type de document : texte imprimé Auteurs : Jérôme Kagan, Editeur : Bruxelles : Dessart ; Mardaga Année de publication : 1976 Mots-clés : psychologie développement relation enfant école relation enfant enseignant identité rôle sexuel concept de soi facteur biologique comportement besoin incertitude jeu échec résolution enseignant colère pensée structure schème image représentation symbole concept degré d'abstraction intelligence complexité différenciation langage signification règle acquisition de règle structure de la pensée attention perception instituteur institutrice apprendre enseignement cognitif processus cognitif interprétation mémoire production d'idées apprendre à apprendre programme machine à enseigner modification de programme évaluation comportement impulsif comportement réfléchi Piaget développement intellectuel niveau sensori-moteur niveau préopératoire niveau opératoire concret représentation mentale niveau opératoire formel QI disposition héréditaire. Index. décimale : 15.3 Psychologie de l'enfant et de l'adolescent (Développement, éducation, famille recomposée, séparation des parents, ) Permalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3122 Comprendre l' enfant : comportement, motifs, pensée [texte imprimé] / Jérôme Kagan, . - Bruxelles : Dessart ; Mardaga, 1976.
Mots-clés : psychologie développement relation enfant école relation enfant enseignant identité rôle sexuel concept de soi facteur biologique comportement besoin incertitude jeu échec résolution enseignant colère pensée structure schème image représentation symbole concept degré d'abstraction intelligence complexité différenciation langage signification règle acquisition de règle structure de la pensée attention perception instituteur institutrice apprendre enseignement cognitif processus cognitif interprétation mémoire production d'idées apprendre à apprendre programme machine à enseigner modification de programme évaluation comportement impulsif comportement réfléchi Piaget développement intellectuel niveau sensori-moteur niveau préopératoire niveau opératoire concret représentation mentale niveau opératoire formel QI disposition héréditaire. Index. décimale : 15.3 Psychologie de l'enfant et de l'adolescent (Développement, éducation, famille recomposée, séparation des parents, ) Permalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3122 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 3286 RESERVE 15.3 KAG Livre Réserve RESERVE Inventaire 2023
DisponibleComprendre les maths pour bien les enseigner : 2,5/14 ans, 2. Traitement de données - Arithmétique - Algèbre / Françoise Baret
Titre de série : Comprendre les maths pour bien les enseigner : 2,5/14 ans, 2 Titre : Traitement de données - Arithmétique - Algèbre Type de document : texte imprimé Auteurs : Françoise Baret ; Christine Géron ; Françoise Lucas ; Maud Nolmans ; Chantal Van Pachterbeke ; Patricia Wantiez Editeur : Mont-Saint-Guibert - Wommelgem : Van In Année de publication : 2023 Importance : 350 p. Présentation : ill. Format : 30 cm. ISBN/ISSN/EAN : 978-2-8041-9776-6 Langues : Français (fre) Mots-clés : traitement de données arithmétique algèbre problème combinaison probabilité statistique collecte de données sondage graphique nombre cardinal nombre ordinal comptage dénombrement schème numération romaine chiffre romain numération décimale nombre opération calcul,numération addition soustraction division multiplication puissance racine signe mathématique nombre décimal tables de multiplication Index. décimale : 51.1 "Pour réflechir aux mathématiques" Résumé : Cet ouvrage est destiné aux enseignants et futurs enseignants de l'école maternelle, primaire et du début du secondaire. Il explicite et illustre de façon rigoureuse et accessible LA MATIERE à enseigner : de quoi s'agit-il? Pourquoi est-ce important dans le parcours de l'élève?
Les définitions s'adressent aux adultes, leur donnant une signification explicite, précise, juste de la matière
Des illustrations variées contextualisent ces définitions pour évoquer des situations possibles dans les différents niveaux d'enseignement
Des points d'attention ciblent une difficulté, un abus, une particularité, une erreur... dont il faut prendre conscience en tant qu'enseignant
Des pourquoi ponctuent régulièrement le texte pour faire valoir l'articulation des notions à enseigner, les obstacles à faire dépasser, la production de sens et favoriser la compréhension par les élèves
Des renvois sommaires à des activités de Math & Sens et d'autres ouvrages didactiques jalonnent ces différents éléments et ouvrent sur des "comment" multiples.
Le présent tome se centre sur les thèmes du traitement de données, de la géométrie et des grandeurs. Un second tome développera les thèmes des nombres, des opérations et du calcul et poursuivra le traitement de données avec des éléments de combinatoire, de probabilité et de statistique.Note de contenu : PARTIE 1 : RÉSOLUTION DE PROBLÈMES
1. Problèmes ou situations problèmes ?
2. Qu’est-ce qu’une situation problème ?
3. Trois fonctions possibles des situations problèmes
4. Compétences de « résolveur » de situations problèmes
5. Paramètres et grille d’analyse des situations problèmes
5.1. Une variété de paramètres
5.2. Problèmes ouverts, fermés, semi-ouverts
5.3. Problèmes à une ou plusieurs solutions
5.4. Grille d’analyse des situations problèmes
6. Situations à modélisation spécifique
6.1. Les problèmes de partages inégaux
6.2. Les problèmes d’intervalles
6.3. Les problèmes liant des données commerciales ou autres
PARTIE 2 : TRAITEMENT DE DONNÉES NUMÉRIQUES
1. Éléments de combinatoire
1.1. Les situations « produits »
1.2. Les permutations
1.3. Les arrangements
1.4. Les combinaisons
2. Éléments de probabilités
2.1. Probabilités et pensée probabiliste
2.1.1. Expérience aléatoire, hasard et probabilité
2.1.2. Expérience aléatoire et évènement
2.1.3. Notion de probabilité
2.1.4. Pensée probabiliste
2.2. Probabilité expérimentale
2.2.1. Approche qualitative de la notion de fréquence d’un évènement
2.2.2. Spécificités de l’approche expérimentale de la probabilité
2.2.3. Pertinence de l’approche expérimentale de la probabilité
2.2.4. Recours aux simulations et aux outils numériques
2.3. Probabilité théorique
2.3.1. Spécificités de l’approche théorique de la probabilité
2.3.2. Notions élémentaires de probabilités théoriques
3. Éléments de statistique
3.1. Cerner la situation et collecter des données
3.1.1. Poser une question statistique et enquêter
3.1.2. Enquêter au moyen d’un sondage
3.1.2.1. Des questions de sondage pertinentes
3.1.2.2. Les types de données recherchées
3.1.2.3. Les facteurs influençant les résultats d’un sondage
3.1.2.4. Les caractéristiques d’un échantillon représentatif
3.1.2.5. L’enregistrement des données récoltées
3.2. Organiser, présenter, analyser les données
3.2.1. Une organisation de base : le tableau des effectifs
3.2.2. La notion de fréquence en statistique
3.2.3. Diverses représentations graphiques des séries statistiques
3.2.3.1. Le diagramme à tiges et à feuilles
3.2.3.2. Le diagramme circulaire
3.2.3.3. Le diagramme en bâtonnets
3.2.3.4. L’histogramme
3.3. Interpréter des données par des indicateurs statistiques
3.3.1. Un indicateur de dispersion : l’étendue
3.3.2. Des indicateurs de position : les valeurs centrales
3.3.2.1. La moyenne
3.3.2.1.1. Moyenne et partage équitable
3.3.2.1.2. Moyenne arithmétique d’une série statistique
3.3.2.2. Le mode
3.3.2.3. La médiane
3.3.3. Interpréter au moyen des valeurs centrales
PARTIE 3 : NOMBRES
1. Les nombres naturels
1.1. Les aspects du nombre
1.1.1. Aspect cardinal du nombre naturel
1.1.2. Aspect ordinal du nombre naturel
1.1.3. Articulation entre aspect cardinal et aspect ordinal
1.1.4. Notions liées à ces deux aspects du nombre
1.2. Les fonctions des nombres
1.2.1. Les nombres pour comparer
1.2.2. Les nombres pour mémoriser
1.2.3. Les nombres pour anticiper
1.3. Les désignations des nombres
1.3.1. Désignations verbales des nombres
1.3.2. Désignations schématiques des nombres
1.3.3. Désignations symboliques des nombres
1.3.3.1. Distinction entre chiffre et nombre
1.3.3.2. Significations des écritures chiffrées
1.4. Le dénombrement
1.4.1. Le principe de création mentale des unités
1.4.2. Le principe d’adéquation unique
1.4.3. Le principe de cardinalité
1.4.4. Les principes d’invariance du cardinal et de non-pertinence de l’ordre
1.5. Les décompositions
2. Les supports structurants
2.1. Les schèmes
2.1.1. Types de schèmes
2.1.2. Critères d’analyse des schèmes
2.2. De la bande numérique à la droite des nombres
2.3. Le tableau des cent premiers nombres
3. Les différents types de nombres
3.1. Les nombres entiers relatifs
3.2. Les nombres rationnels
3.3. Les nombres réels
3.4. Les ensembles de nombres
4. La numération
4.1. Deux types de systèmes de numération écrite
4.1.1. Les numérations additives
4.1.2. Les numérations de position
4.2. Des numérations en évolution
4.2.1. L’évolution vers notre numération décimale de position
4.2.2. L’évolution du système romain
4.3. La numération décimale positionnelle à la loupe
4.3.1. La numération décimale positionnelle écrite : les grands principes
4.3.2. Les nombres à virgule
4.3.3. L’écriture des grands nombres
4.3.4. Notre numération décimale orale
4.4. matériel de numération
PARTIE 4 : OPÉRATION ET CALCUL
1. Opérations, un monde vaste et complexe
1.1. Qu’entend-on par « opération » ?
1.2. Opérer a-t-il toujours du sens ?
2. Définitions mathématiques des opérations
2.1. Les opérations « directes » : addition – multiplication
2.1.1. La somme de deux nombres naturels
2.1.2. L’addition vue comme une opération qui combine
2.1.3. L’addition vue comme une opération qui transforme
2.1.4. Les interprétations de l’addition
2.1.5. Le produit de deux nombres naturels
2.1.6. La multiplication vue comme opération qui combine
2.1.7. Une autre définition du produit de deux nombres naturels
2.1.8. La multiplication vue comme une opération qui transforme
2.1.9. Les interprétations de la multiplication
2.2. Les opérations réciproques : soustraction – division
2.2.1. Différence de deux nombres naturels
2.2.2. Soustraction
2.2.3. Soustraction comme opération réciproque de l’addition
2.2.4. Interprétations de la soustraction
2.2.5. Quotient de deux nombres naturels
2.2.6. Pourquoi ne peut-on pas diviser par zéro ?
2.2.7. Division euclidienne
2.2.8. Division exacte
2.2.9. Division exacte comme opération réciproque de la multiplication
2.2.10. Interprétations de la division
3. Sens des opérations
3.1. Quelques préalables pour organiser les sens des opérations
3.1.1. L’importance de lier les opérations à des situations
3.1.2. La variété des situations liées à la variété des contextes numériques
3.1.3. De la situation vers l’opération : plusieurs étapes utiles
3.1.4. Poser un calcul et chercher le résultat
3.2. Les dynamiques opératoires essentielles et les sens au quotidien
3.2.1. Combiner
3.2.2. Transformer
3.2.3. Comparer
3.2.4. Tableau de synthèse
3.3. Les différents sens des opérations dans le champ additif
3.3.1. Combiner dans le champ additif
3.3.2. Transformer dans le champ additif
3.3.3. Comparer dans le champ additif
3.3.4. Différentes façons de penser une soustraction : retrait - écart
3.4. Les différents sens des opérations dans le champ multiplicatif
3.4.1. Combiner dans le champ multiplicatif
3.4.2. Transformer dans le champ multiplicatif
3.4.3. Comparer dans le champ multiplicatif
3.4.4. Différentes façons de penser une division :
4. Propriétés des opérations
4.1. Commutativité
4.1.1. Cas de l’addition et de la multiplication
4.1.2. Cas de la soustraction et de la division
4.2. Associativité
4.2.1. Cas de l’addition et de la multiplication
4.2.2. Cas de la soustraction et de la division
4.3. Compensation
4.3.1. Cas de l’addition et de la multiplication
4.3.2. Cas de la soustraction et de la division
4.4. Distributivité
4.4.1. Distributivité de la multiplication sur l’addition
4.4.2. Distributivité de la multiplication sur la soustraction
4.4.3. Double distributivité
4.4.4. Cas de la division
4.5. Élément neutre
4.5.1. Cas de l’addition et de la multiplication
4.5.2. Cas de la soustraction et de la division
4.6. Élément absorbant
4.7. Élément symétrique
5. Extension des opérations aux autres nombres
5.1. Extension des quatre opérations aux nombres entiers relatifs
5.1.1. Addition dans ℤ
5.1.2. Soustraction dans ℤ
5.1.3. multiplication dans ℤ
5.1.4. Division dans ℤ
5.2. Extension des quatre opérations aux nombres décimaux à virgule
5.2.1. Addition et soustraction de nombres décimaux à virgule positifs
5.2.2. multiplication de nombres décimaux à virgule positifs
5.2.3. Division de deux nombres décimaux à virgule positifs
5.3. Extension des quatre opérations aux nombres rationnels
5.4. Extension des quatre opérations aux nombres réels
6. Puissances et racines
6.1. Notion de puissance
6.2. Notion de racine
7. Calcul
7.1. Dépasser le comptage pour vraiment calculer
7.2. Trois clés pour pouvoir calculer
7.2.1. mobiliser des images mentales des nombres
7.2.2. mobiliser les sens et les propriétés des opérations
7.2.3. mobiliser le sens de l’égalité
7.3. Quatre grandes stratégies de calcul
7.4. Construction du calcul automatisé
7.4.1. Répertoire de calculs automatisés dans le champ additif
7.4.2. Répertoire de calculs automatisés dans le champ multiplicatif
7.4.3. Calcul automatisé au service des estimations
7.5. Procédés de calcul réfléchi
7.5.1. Commuter les termes ou les facteurs
7.5.2. Décomposer puis réassocier ou distribuer
7.5.2.1. Procédés de décomposition dans le champ additif
7.5.2.2. Procédés de décomposition dans le champ multiplicatif
7.5.3. Agir sur un nombre et compenser sur l’autre
7.5.3.1. Procédés de compensation dans le champ additif
7.5.3.2. Procédés de compensation dans le champ multiplicatif
7.5.4. Étendre des procédés de calcul réfléchi aux nombres décimaux à virgule
7.5.4.1. Calcul réfléchi avec les nombres décimaux à virgule dans le champ additif
7.5.4.2. Calcul réfléchi avec les nombres décimaux à virgule dans le champ multiplicatif
7.5.5. Tableau de synthèse des outils en calcul réfléchi
7.6. Usage des parenthèses dans les calculs et priorité des opérations
7.7. Algorithmes de calcul écrit avec les nombres naturels
7.7.1. Algorithme d’addition écrite
7.7.2. Algorithme de soustraction écrite
7.7.3. Algorithme de multiplication écrite
7.7.4. Algorithme de division écrite
7.8. Calcul écrit avec des nombres décimaux à virgule
7.8.1. Addition et soustraction écrites avec des nombres décimaux à virgule
7.8.2. multiplication écrite avec des nombres décimaux à virgule
7.8.3. Division écrite avec des nombres décimaux à virgule
8. Familles de nombres
8.1. Familles de nombres en lien avec des configurations de points
8.1.1. Nombres pairs et impairs
8.1.2. Nombres rectangulaires et carrés
8.1.3. Nombres triangulaires
8.2. Divisibilité
8.2.1. Diviseurs et multiples d’un nombre
8.2.2. Tables de multiplication
8.2.2.1. Table des multiples et table de multiplication
8.2.2.2. Représentations des tables
8.2.2.3. Tableaux organisateurs des tables
8.2.2.4. Outils de mémorisation des tables
8.2.3. PGCD et PPCm
8.2.4. Nombres premiers
8.2.4.1. Ensemble infini des nombres premiers
8.2.4.2. Décomposition en facteurs premiers
8.2.4.3. Intérêts des décompositions en facteurs premiers
8.2.5. Caractères de divisibilité
8.2.5.1. Caractères de divisibilité utilisant le(s) dernier(s) chiffre(s) du nombre
8.2.5.2. Caractères de divisibilité utilisant tous les chiffres du nombre
PARTIE 5 : ALGÈBRE
1. Objets fondamentaux
1.1. La lettre
1.2. Les expressions algébriques
1.3. Les monômes et polynômes
1.4. L’égalité
2. Calcul algébrique
2.1. Somme et produit algébriques
2.2. Propriété de distributivité
2.3. Identités remarquables
2.4. méthodes de factorisation
3. Transformations d’égalités
3.1. Principes d’équivalence
3.2. ÉquationsPermalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=4942 Comprendre les maths pour bien les enseigner : 2,5/14 ans, 2. Traitement de données - Arithmétique - Algèbre [texte imprimé] / Françoise Baret ; Christine Géron ; Françoise Lucas ; Maud Nolmans ; Chantal Van Pachterbeke ; Patricia Wantiez . - Mont-Saint-Guibert - Wommelgem : Van In, 2023 . - 350 p. : ill. ; 30 cm.
ISBN : 978-2-8041-9776-6
Langues : Français (fre)
Mots-clés : traitement de données arithmétique algèbre problème combinaison probabilité statistique collecte de données sondage graphique nombre cardinal nombre ordinal comptage dénombrement schème numération romaine chiffre romain numération décimale nombre opération calcul,numération addition soustraction division multiplication puissance racine signe mathématique nombre décimal tables de multiplication Index. décimale : 51.1 "Pour réflechir aux mathématiques" Résumé : Cet ouvrage est destiné aux enseignants et futurs enseignants de l'école maternelle, primaire et du début du secondaire. Il explicite et illustre de façon rigoureuse et accessible LA MATIERE à enseigner : de quoi s'agit-il? Pourquoi est-ce important dans le parcours de l'élève?
Les définitions s'adressent aux adultes, leur donnant une signification explicite, précise, juste de la matière
Des illustrations variées contextualisent ces définitions pour évoquer des situations possibles dans les différents niveaux d'enseignement
Des points d'attention ciblent une difficulté, un abus, une particularité, une erreur... dont il faut prendre conscience en tant qu'enseignant
Des pourquoi ponctuent régulièrement le texte pour faire valoir l'articulation des notions à enseigner, les obstacles à faire dépasser, la production de sens et favoriser la compréhension par les élèves
Des renvois sommaires à des activités de Math & Sens et d'autres ouvrages didactiques jalonnent ces différents éléments et ouvrent sur des "comment" multiples.
Le présent tome se centre sur les thèmes du traitement de données, de la géométrie et des grandeurs. Un second tome développera les thèmes des nombres, des opérations et du calcul et poursuivra le traitement de données avec des éléments de combinatoire, de probabilité et de statistique.Note de contenu : PARTIE 1 : RÉSOLUTION DE PROBLÈMES
1. Problèmes ou situations problèmes ?
2. Qu’est-ce qu’une situation problème ?
3. Trois fonctions possibles des situations problèmes
4. Compétences de « résolveur » de situations problèmes
5. Paramètres et grille d’analyse des situations problèmes
5.1. Une variété de paramètres
5.2. Problèmes ouverts, fermés, semi-ouverts
5.3. Problèmes à une ou plusieurs solutions
5.4. Grille d’analyse des situations problèmes
6. Situations à modélisation spécifique
6.1. Les problèmes de partages inégaux
6.2. Les problèmes d’intervalles
6.3. Les problèmes liant des données commerciales ou autres
PARTIE 2 : TRAITEMENT DE DONNÉES NUMÉRIQUES
1. Éléments de combinatoire
1.1. Les situations « produits »
1.2. Les permutations
1.3. Les arrangements
1.4. Les combinaisons
2. Éléments de probabilités
2.1. Probabilités et pensée probabiliste
2.1.1. Expérience aléatoire, hasard et probabilité
2.1.2. Expérience aléatoire et évènement
2.1.3. Notion de probabilité
2.1.4. Pensée probabiliste
2.2. Probabilité expérimentale
2.2.1. Approche qualitative de la notion de fréquence d’un évènement
2.2.2. Spécificités de l’approche expérimentale de la probabilité
2.2.3. Pertinence de l’approche expérimentale de la probabilité
2.2.4. Recours aux simulations et aux outils numériques
2.3. Probabilité théorique
2.3.1. Spécificités de l’approche théorique de la probabilité
2.3.2. Notions élémentaires de probabilités théoriques
3. Éléments de statistique
3.1. Cerner la situation et collecter des données
3.1.1. Poser une question statistique et enquêter
3.1.2. Enquêter au moyen d’un sondage
3.1.2.1. Des questions de sondage pertinentes
3.1.2.2. Les types de données recherchées
3.1.2.3. Les facteurs influençant les résultats d’un sondage
3.1.2.4. Les caractéristiques d’un échantillon représentatif
3.1.2.5. L’enregistrement des données récoltées
3.2. Organiser, présenter, analyser les données
3.2.1. Une organisation de base : le tableau des effectifs
3.2.2. La notion de fréquence en statistique
3.2.3. Diverses représentations graphiques des séries statistiques
3.2.3.1. Le diagramme à tiges et à feuilles
3.2.3.2. Le diagramme circulaire
3.2.3.3. Le diagramme en bâtonnets
3.2.3.4. L’histogramme
3.3. Interpréter des données par des indicateurs statistiques
3.3.1. Un indicateur de dispersion : l’étendue
3.3.2. Des indicateurs de position : les valeurs centrales
3.3.2.1. La moyenne
3.3.2.1.1. Moyenne et partage équitable
3.3.2.1.2. Moyenne arithmétique d’une série statistique
3.3.2.2. Le mode
3.3.2.3. La médiane
3.3.3. Interpréter au moyen des valeurs centrales
PARTIE 3 : NOMBRES
1. Les nombres naturels
1.1. Les aspects du nombre
1.1.1. Aspect cardinal du nombre naturel
1.1.2. Aspect ordinal du nombre naturel
1.1.3. Articulation entre aspect cardinal et aspect ordinal
1.1.4. Notions liées à ces deux aspects du nombre
1.2. Les fonctions des nombres
1.2.1. Les nombres pour comparer
1.2.2. Les nombres pour mémoriser
1.2.3. Les nombres pour anticiper
1.3. Les désignations des nombres
1.3.1. Désignations verbales des nombres
1.3.2. Désignations schématiques des nombres
1.3.3. Désignations symboliques des nombres
1.3.3.1. Distinction entre chiffre et nombre
1.3.3.2. Significations des écritures chiffrées
1.4. Le dénombrement
1.4.1. Le principe de création mentale des unités
1.4.2. Le principe d’adéquation unique
1.4.3. Le principe de cardinalité
1.4.4. Les principes d’invariance du cardinal et de non-pertinence de l’ordre
1.5. Les décompositions
2. Les supports structurants
2.1. Les schèmes
2.1.1. Types de schèmes
2.1.2. Critères d’analyse des schèmes
2.2. De la bande numérique à la droite des nombres
2.3. Le tableau des cent premiers nombres
3. Les différents types de nombres
3.1. Les nombres entiers relatifs
3.2. Les nombres rationnels
3.3. Les nombres réels
3.4. Les ensembles de nombres
4. La numération
4.1. Deux types de systèmes de numération écrite
4.1.1. Les numérations additives
4.1.2. Les numérations de position
4.2. Des numérations en évolution
4.2.1. L’évolution vers notre numération décimale de position
4.2.2. L’évolution du système romain
4.3. La numération décimale positionnelle à la loupe
4.3.1. La numération décimale positionnelle écrite : les grands principes
4.3.2. Les nombres à virgule
4.3.3. L’écriture des grands nombres
4.3.4. Notre numération décimale orale
4.4. matériel de numération
PARTIE 4 : OPÉRATION ET CALCUL
1. Opérations, un monde vaste et complexe
1.1. Qu’entend-on par « opération » ?
1.2. Opérer a-t-il toujours du sens ?
2. Définitions mathématiques des opérations
2.1. Les opérations « directes » : addition – multiplication
2.1.1. La somme de deux nombres naturels
2.1.2. L’addition vue comme une opération qui combine
2.1.3. L’addition vue comme une opération qui transforme
2.1.4. Les interprétations de l’addition
2.1.5. Le produit de deux nombres naturels
2.1.6. La multiplication vue comme opération qui combine
2.1.7. Une autre définition du produit de deux nombres naturels
2.1.8. La multiplication vue comme une opération qui transforme
2.1.9. Les interprétations de la multiplication
2.2. Les opérations réciproques : soustraction – division
2.2.1. Différence de deux nombres naturels
2.2.2. Soustraction
2.2.3. Soustraction comme opération réciproque de l’addition
2.2.4. Interprétations de la soustraction
2.2.5. Quotient de deux nombres naturels
2.2.6. Pourquoi ne peut-on pas diviser par zéro ?
2.2.7. Division euclidienne
2.2.8. Division exacte
2.2.9. Division exacte comme opération réciproque de la multiplication
2.2.10. Interprétations de la division
3. Sens des opérations
3.1. Quelques préalables pour organiser les sens des opérations
3.1.1. L’importance de lier les opérations à des situations
3.1.2. La variété des situations liées à la variété des contextes numériques
3.1.3. De la situation vers l’opération : plusieurs étapes utiles
3.1.4. Poser un calcul et chercher le résultat
3.2. Les dynamiques opératoires essentielles et les sens au quotidien
3.2.1. Combiner
3.2.2. Transformer
3.2.3. Comparer
3.2.4. Tableau de synthèse
3.3. Les différents sens des opérations dans le champ additif
3.3.1. Combiner dans le champ additif
3.3.2. Transformer dans le champ additif
3.3.3. Comparer dans le champ additif
3.3.4. Différentes façons de penser une soustraction : retrait - écart
3.4. Les différents sens des opérations dans le champ multiplicatif
3.4.1. Combiner dans le champ multiplicatif
3.4.2. Transformer dans le champ multiplicatif
3.4.3. Comparer dans le champ multiplicatif
3.4.4. Différentes façons de penser une division :
4. Propriétés des opérations
4.1. Commutativité
4.1.1. Cas de l’addition et de la multiplication
4.1.2. Cas de la soustraction et de la division
4.2. Associativité
4.2.1. Cas de l’addition et de la multiplication
4.2.2. Cas de la soustraction et de la division
4.3. Compensation
4.3.1. Cas de l’addition et de la multiplication
4.3.2. Cas de la soustraction et de la division
4.4. Distributivité
4.4.1. Distributivité de la multiplication sur l’addition
4.4.2. Distributivité de la multiplication sur la soustraction
4.4.3. Double distributivité
4.4.4. Cas de la division
4.5. Élément neutre
4.5.1. Cas de l’addition et de la multiplication
4.5.2. Cas de la soustraction et de la division
4.6. Élément absorbant
4.7. Élément symétrique
5. Extension des opérations aux autres nombres
5.1. Extension des quatre opérations aux nombres entiers relatifs
5.1.1. Addition dans ℤ
5.1.2. Soustraction dans ℤ
5.1.3. multiplication dans ℤ
5.1.4. Division dans ℤ
5.2. Extension des quatre opérations aux nombres décimaux à virgule
5.2.1. Addition et soustraction de nombres décimaux à virgule positifs
5.2.2. multiplication de nombres décimaux à virgule positifs
5.2.3. Division de deux nombres décimaux à virgule positifs
5.3. Extension des quatre opérations aux nombres rationnels
5.4. Extension des quatre opérations aux nombres réels
6. Puissances et racines
6.1. Notion de puissance
6.2. Notion de racine
7. Calcul
7.1. Dépasser le comptage pour vraiment calculer
7.2. Trois clés pour pouvoir calculer
7.2.1. mobiliser des images mentales des nombres
7.2.2. mobiliser les sens et les propriétés des opérations
7.2.3. mobiliser le sens de l’égalité
7.3. Quatre grandes stratégies de calcul
7.4. Construction du calcul automatisé
7.4.1. Répertoire de calculs automatisés dans le champ additif
7.4.2. Répertoire de calculs automatisés dans le champ multiplicatif
7.4.3. Calcul automatisé au service des estimations
7.5. Procédés de calcul réfléchi
7.5.1. Commuter les termes ou les facteurs
7.5.2. Décomposer puis réassocier ou distribuer
7.5.2.1. Procédés de décomposition dans le champ additif
7.5.2.2. Procédés de décomposition dans le champ multiplicatif
7.5.3. Agir sur un nombre et compenser sur l’autre
7.5.3.1. Procédés de compensation dans le champ additif
7.5.3.2. Procédés de compensation dans le champ multiplicatif
7.5.4. Étendre des procédés de calcul réfléchi aux nombres décimaux à virgule
7.5.4.1. Calcul réfléchi avec les nombres décimaux à virgule dans le champ additif
7.5.4.2. Calcul réfléchi avec les nombres décimaux à virgule dans le champ multiplicatif
7.5.5. Tableau de synthèse des outils en calcul réfléchi
7.6. Usage des parenthèses dans les calculs et priorité des opérations
7.7. Algorithmes de calcul écrit avec les nombres naturels
7.7.1. Algorithme d’addition écrite
7.7.2. Algorithme de soustraction écrite
7.7.3. Algorithme de multiplication écrite
7.7.4. Algorithme de division écrite
7.8. Calcul écrit avec des nombres décimaux à virgule
7.8.1. Addition et soustraction écrites avec des nombres décimaux à virgule
7.8.2. multiplication écrite avec des nombres décimaux à virgule
7.8.3. Division écrite avec des nombres décimaux à virgule
8. Familles de nombres
8.1. Familles de nombres en lien avec des configurations de points
8.1.1. Nombres pairs et impairs
8.1.2. Nombres rectangulaires et carrés
8.1.3. Nombres triangulaires
8.2. Divisibilité
8.2.1. Diviseurs et multiples d’un nombre
8.2.2. Tables de multiplication
8.2.2.1. Table des multiples et table de multiplication
8.2.2.2. Représentations des tables
8.2.2.3. Tableaux organisateurs des tables
8.2.2.4. Outils de mémorisation des tables
8.2.3. PGCD et PPCm
8.2.4. Nombres premiers
8.2.4.1. Ensemble infini des nombres premiers
8.2.4.2. Décomposition en facteurs premiers
8.2.4.3. Intérêts des décompositions en facteurs premiers
8.2.5. Caractères de divisibilité
8.2.5.1. Caractères de divisibilité utilisant le(s) dernier(s) chiffre(s) du nombre
8.2.5.2. Caractères de divisibilité utilisant tous les chiffres du nombre
PARTIE 5 : ALGÈBRE
1. Objets fondamentaux
1.1. La lettre
1.2. Les expressions algébriques
1.3. Les monômes et polynômes
1.4. L’égalité
2. Calcul algébrique
2.1. Somme et produit algébriques
2.2. Propriété de distributivité
2.3. Identités remarquables
2.4. méthodes de factorisation
3. Transformations d’égalités
3.1. Principes d’équivalence
3.2. ÉquationsPermalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=4942 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité G005784 51.1 COM Livre Centre de documentation HELHa - Gosselies 51 Enseignement des mathématiques Inventaire 2023 Consultable uniquement sur place
Exclu du prêtDictionnaire fondamental de la psychologie
Titre : Dictionnaire fondamental de la psychologie Type de document : texte imprimé Editeur : Paris : Larousse Année de publication : 1999 Importance : 693 - 1425 p. Présentation : (vol.2) Format : 21 cm ISBN/ISSN/EAN : 978-2-03-750048-7 Prix : 1739 Fb. Mots-clés : labyrinthe langage lecture localisation maturation mémoire métaphore méthode modèle module manie masochisme miroir moi Montessori Moreno motivation motricité mouvement narcissisme névrose nombre nourrisson obéissance œdipe orthophonie paranoïa parental Pavlov pédagogie perceptif perception phallus phénoménologie phobie Piaget postural potentiel pragmatique procédure processus programme projection psychanalyse psychiatrie psychologie psycholinguistique psychomoteur psychophysique psychose psychothérapie racisme raisonnement recherche action référence refoulement régression relation sociale relaxation représentation sociale rêve schéma corporel schème schizophrénie sémiotique sénilité sensation sensori-moteur sexualité signifiant sociabilité sociométrie sommeil stade stéréotype stratégie structuralisme sublimation succion suicide surdité surdoué symbole symptôme test thérapie comportementale thérapie familiale topologie toxicomanie transfert trisomie 21 typologie valeur vicariant vieillissement Wallon Zazzo. Index. décimale : 15.0 Psychologie généralités (dictionnaires, encyclopédies, ouvrages généraux) Permalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=1070 Dictionnaire fondamental de la psychologie [texte imprimé] . - Paris : Larousse, 1999 . - 693 - 1425 p. : (vol.2) ; 21 cm.
ISBN : 978-2-03-750048-7 : 1739 Fb.
Mots-clés : labyrinthe langage lecture localisation maturation mémoire métaphore méthode modèle module manie masochisme miroir moi Montessori Moreno motivation motricité mouvement narcissisme névrose nombre nourrisson obéissance œdipe orthophonie paranoïa parental Pavlov pédagogie perceptif perception phallus phénoménologie phobie Piaget postural potentiel pragmatique procédure processus programme projection psychanalyse psychiatrie psychologie psycholinguistique psychomoteur psychophysique psychose psychothérapie racisme raisonnement recherche action référence refoulement régression relation sociale relaxation représentation sociale rêve schéma corporel schème schizophrénie sémiotique sénilité sensation sensori-moteur sexualité signifiant sociabilité sociométrie sommeil stade stéréotype stratégie structuralisme sublimation succion suicide surdité surdoué symbole symptôme test thérapie comportementale thérapie familiale topologie toxicomanie transfert trisomie 21 typologie valeur vicariant vieillissement Wallon Zazzo. Index. décimale : 15.0 Psychologie généralités (dictionnaires, encyclopédies, ouvrages généraux) Permalink : http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=1070 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 11165 15.0 DIC Livre Centre de documentation HELHa - Gosselies 1 Philosophie - Psychologie - Citoyenneté - Morale Inventaire 2023 Consultable uniquement sur place
Exclu du prêtLes Grandes psychologies modernes
PermalinkDes maths partout, pour tous ! : développer des compétences fonctionnelles en mathématiques avec des personnes ayant besoin de soutien / Françoise Lucas
PermalinkLa notion de compétence en éducation et formation : enjeux et problèmes / Bernard Rey
Permalink