Titre : |
Math et Manips : Des manipulations pour favoriser la construction des apprentissages en mathématique |
Type de document : |
texte imprimé |
Auteurs : |
Marie-France Guissard, Directeur de publication, rédacteur en chef ; Valérie Henry, Directeur de publication, rédacteur en chef |
Editeur : |
Nivelles : CREM |
Année de publication : |
2017 |
Collection : |
Mathématiques de la prime enfance à l'âge adulte |
Importance : |
313 p. |
Présentation : |
ill. en noir |
Format : |
30 cm. |
ISBN/ISSN/EAN : |
978-2-930161-08-2 |
Langues : |
Français (fre) |
Mots-clés : |
Concept mathématique Cône Curiosité scientifique Cylindre étalon expérimentation scientifique Forme géométrique Grandeur Interprétation de résultats Manipulation mathématique Mesure de grandeur Repérage dans l'espace Volume |
Index. décimale : |
51.1 "Pour réflechir aux mathématiques" |
Résumé : |
Les Math & Manips sont des activités conçues pour provoquer chez les élèves des conflits entre ce qu’ils pensent et ce qu’ils découvrent lors des expérimentations. Nous proposons trois séquences d'apprentissage intégrant des manipulations, et destinées à diverses tranches d'âge de l'enseignement élémentaire voire du début du collège. Pour les enfants de 6 à 8 ans, nous travaillons les grandeurs (longueurs, masses, capacités et aires) avec pour objectif de dégager des méthodes efficaces de comparaison sans unité conventionnelle de référence. Pour les élèves de 8 à 10 ans, il s'agit de faire découvrir l'utilité d'un étalon conventionnel en travaillant les capacités. Pour ceux de 10 à 12 ans, nous proposons une séquence visant l'appropriation de la notion de volume. La discussion avec les participants s’oriente principalement sur les concepts mis en place au cours de chaque activité. |
Note de contenu : |
Table des matières
Avant-propos
1 Origine et motivation du projet
2 Objectifs du projet
3 Math & Manip et laboratoire de mathématiques
4 Math & Manips de la maternelle à 18 ans
41 Dans l’enseignement fondamental
42 Dans l’enseignement secondaire
5 Contenu
6 Fils conducteurs
6.1 Les grandeurs
6.2 La démarche de modélisation
7 Méthodologie de la recherche
8 Nos documents
8.1 Les compétences
8.2 Présentation type des Math & Manips
8.3 En pratique
I Math & Manips à partir de 2 ans et demi 15
1 Repérage dans l’espace
1 Intérieur et extérieur
1.1 Des cercles et des poissons
1.2 Dé codé
1.3 L’étang
2 Itinéraires
2.1 Tracer un itinéraire et le coder
2.2 Associer une bandelette à un itinéraire
3 Au-dessus et en dessous
3.1 L’arche
3.2 Construction de tours
3.3 Description de tours
3.4 Description de tours avec contrainte
2 Reconnaissance de formes
1 Symétrie
2 Empreintes
2.1 Empreintes libres
2.2 Association
2.3 Ressemblance
3 Puzzles
3.1 Puzzle poisson-contour
3.2 Puzzle poisson-pièces
3.3 Puzzle poisson-œil
3.4 Puzzle avec contrainte
Matériel, fiches à photocopier
II Math & Manips à partir de 5 ans 87
3 Comparaison de grandeurs
1 Conservation de la capacité
2 Longueurs, capacités et masses
2.1 Bougies d’anniversaire
2.2 Moules à gâteau
2.3 Bonbons
3 Capacités, longueurs et aires
3.1 Gobelets
3.2 Rubans d’emballage
3.3 Serviettes carrées ou set de table ?
3.4 Synthèse
3.5 Le goûter d’anniversaire
4 Des étalons
1 Comparaison directe de deux capacités
Table des matières
2 Étalons non conventionnels
3 Étalons conventionnels : le litre et ses sous-multiples
3.1 Et si on comparait avec un autre étalon ?
3.2 Et si on classait les amphores ?
3.3 Et si on classait des récipients ?
5 Notion de Volume
1 Construction de la notion de volume
1.1 Comparaison de boîtes
1.2 Comparaison d’objets pleins
1.3 Remplissage et immersion
2 Boîtes parallélépipédiques
2.1 Construction d’un solide en cubes
2.2 Comparaison du volume de boîtes parallélépipédiques
2.3 Construction de la formule du volume du parallélépipède rectangle
2.4 Calcul du volume du parallélépipède rectangle en cm3
2.5 Une boîte particulière
2.6 Adéquation des unités
2.7 Calcul du volume d’un objet
Description de matériel, fiches à photocopier
III Math & Manips à partir de 11 ans
6 Agrandissements
1 Découverte
1.1 Découvrons Apprenti Géomètre avec les formes libres
1.2 Doublons les longueurs
1.3 Établissons les caractéristiques d’un agrandissement
2 Pavages pour comparer des aires
2.1 Continuons la découverte d’Apprenti Géomètre
2.2 Pavons les polygones
2.3 Comparons les aires
3 Constructions pour généraliser
3.1 Construisons des agrandissements de côtés de longueur double
3.2 Construisons des agrandissements de côtés de longueur triple
4 Généralisations
4.1 Triplons la longueur des côtés
4.2 Multiplions la longueur des côtés par un nombre entier
4.3 Observons le disque
7 Des cylindres
1 Des cylindres et leur hauteur
1.1 Combien de verres pour remplir la casserole à la moitié de sa hauteur ?
1.2 Et si on double la hauteur ?
1.3 Et si on triple la hauteur ?
1.4 Et si la hauteur est multipliée par 4, 5 ou 10 ?
2 Des cylindres et leur diamètre
2.1 Et si on double ou triple le diamètre ?
2.2 Et si on vérifiait ?
2.3 Et si le diamètre est multiplié par 4, 5 ou 10 ?
3 Des cylindres leur hauteur et leur diamètre
4 Un outil supplémentaire : le coefficient de proportionnalité
5 D'autres récipients
Description de matériel, fiches à photocopier
IV Math & Manips à partir de 15 ans
8 Le volume du cône
1 Volume du cône et fonction cubique
1.1 Le verre à moitié vide, ou à moitié plein
1.2 Graduation d’un cône
1.3 Et le cône à moitié rempli ?
2 Volume du cône et fonctions réciproques
2.1 Expérimentation et graphiques
2.2 Modélisation et comparaison
2.3 Et le cône à moitié rempli ?
9 Problèmes d’optimisation
1 La boîte sans couvercle
2 La boîte parallélépipédique
3 Le cube
4 Le cône
Matériel, fiches à photocopier
Bibliographie
Index
|
Permalink : |
http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3409 |
Math et Manips : Des manipulations pour favoriser la construction des apprentissages en mathématique [texte imprimé] / Marie-France Guissard, Directeur de publication, rédacteur en chef ; Valérie Henry, Directeur de publication, rédacteur en chef . - Nivelles : CREM, 2017 . - 313 p. : ill. en noir ; 30 cm.. - ( Mathématiques de la prime enfance à l'âge adulte) . ISBN : 978-2-930161-08-2 Langues : Français ( fre)
Mots-clés : |
Concept mathématique Cône Curiosité scientifique Cylindre étalon expérimentation scientifique Forme géométrique Grandeur Interprétation de résultats Manipulation mathématique Mesure de grandeur Repérage dans l'espace Volume |
Index. décimale : |
51.1 "Pour réflechir aux mathématiques" |
Résumé : |
Les Math & Manips sont des activités conçues pour provoquer chez les élèves des conflits entre ce qu’ils pensent et ce qu’ils découvrent lors des expérimentations. Nous proposons trois séquences d'apprentissage intégrant des manipulations, et destinées à diverses tranches d'âge de l'enseignement élémentaire voire du début du collège. Pour les enfants de 6 à 8 ans, nous travaillons les grandeurs (longueurs, masses, capacités et aires) avec pour objectif de dégager des méthodes efficaces de comparaison sans unité conventionnelle de référence. Pour les élèves de 8 à 10 ans, il s'agit de faire découvrir l'utilité d'un étalon conventionnel en travaillant les capacités. Pour ceux de 10 à 12 ans, nous proposons une séquence visant l'appropriation de la notion de volume. La discussion avec les participants s’oriente principalement sur les concepts mis en place au cours de chaque activité. |
Note de contenu : |
Table des matières
Avant-propos
1 Origine et motivation du projet
2 Objectifs du projet
3 Math & Manip et laboratoire de mathématiques
4 Math & Manips de la maternelle à 18 ans
41 Dans l’enseignement fondamental
42 Dans l’enseignement secondaire
5 Contenu
6 Fils conducteurs
6.1 Les grandeurs
6.2 La démarche de modélisation
7 Méthodologie de la recherche
8 Nos documents
8.1 Les compétences
8.2 Présentation type des Math & Manips
8.3 En pratique
I Math & Manips à partir de 2 ans et demi 15
1 Repérage dans l’espace
1 Intérieur et extérieur
1.1 Des cercles et des poissons
1.2 Dé codé
1.3 L’étang
2 Itinéraires
2.1 Tracer un itinéraire et le coder
2.2 Associer une bandelette à un itinéraire
3 Au-dessus et en dessous
3.1 L’arche
3.2 Construction de tours
3.3 Description de tours
3.4 Description de tours avec contrainte
2 Reconnaissance de formes
1 Symétrie
2 Empreintes
2.1 Empreintes libres
2.2 Association
2.3 Ressemblance
3 Puzzles
3.1 Puzzle poisson-contour
3.2 Puzzle poisson-pièces
3.3 Puzzle poisson-œil
3.4 Puzzle avec contrainte
Matériel, fiches à photocopier
II Math & Manips à partir de 5 ans 87
3 Comparaison de grandeurs
1 Conservation de la capacité
2 Longueurs, capacités et masses
2.1 Bougies d’anniversaire
2.2 Moules à gâteau
2.3 Bonbons
3 Capacités, longueurs et aires
3.1 Gobelets
3.2 Rubans d’emballage
3.3 Serviettes carrées ou set de table ?
3.4 Synthèse
3.5 Le goûter d’anniversaire
4 Des étalons
1 Comparaison directe de deux capacités
Table des matières
2 Étalons non conventionnels
3 Étalons conventionnels : le litre et ses sous-multiples
3.1 Et si on comparait avec un autre étalon ?
3.2 Et si on classait les amphores ?
3.3 Et si on classait des récipients ?
5 Notion de Volume
1 Construction de la notion de volume
1.1 Comparaison de boîtes
1.2 Comparaison d’objets pleins
1.3 Remplissage et immersion
2 Boîtes parallélépipédiques
2.1 Construction d’un solide en cubes
2.2 Comparaison du volume de boîtes parallélépipédiques
2.3 Construction de la formule du volume du parallélépipède rectangle
2.4 Calcul du volume du parallélépipède rectangle en cm3
2.5 Une boîte particulière
2.6 Adéquation des unités
2.7 Calcul du volume d’un objet
Description de matériel, fiches à photocopier
III Math & Manips à partir de 11 ans
6 Agrandissements
1 Découverte
1.1 Découvrons Apprenti Géomètre avec les formes libres
1.2 Doublons les longueurs
1.3 Établissons les caractéristiques d’un agrandissement
2 Pavages pour comparer des aires
2.1 Continuons la découverte d’Apprenti Géomètre
2.2 Pavons les polygones
2.3 Comparons les aires
3 Constructions pour généraliser
3.1 Construisons des agrandissements de côtés de longueur double
3.2 Construisons des agrandissements de côtés de longueur triple
4 Généralisations
4.1 Triplons la longueur des côtés
4.2 Multiplions la longueur des côtés par un nombre entier
4.3 Observons le disque
7 Des cylindres
1 Des cylindres et leur hauteur
1.1 Combien de verres pour remplir la casserole à la moitié de sa hauteur ?
1.2 Et si on double la hauteur ?
1.3 Et si on triple la hauteur ?
1.4 Et si la hauteur est multipliée par 4, 5 ou 10 ?
2 Des cylindres et leur diamètre
2.1 Et si on double ou triple le diamètre ?
2.2 Et si on vérifiait ?
2.3 Et si le diamètre est multiplié par 4, 5 ou 10 ?
3 Des cylindres leur hauteur et leur diamètre
4 Un outil supplémentaire : le coefficient de proportionnalité
5 D'autres récipients
Description de matériel, fiches à photocopier
IV Math & Manips à partir de 15 ans
8 Le volume du cône
1 Volume du cône et fonction cubique
1.1 Le verre à moitié vide, ou à moitié plein
1.2 Graduation d’un cône
1.3 Et le cône à moitié rempli ?
2 Volume du cône et fonctions réciproques
2.1 Expérimentation et graphiques
2.2 Modélisation et comparaison
2.3 Et le cône à moitié rempli ?
9 Problèmes d’optimisation
1 La boîte sans couvercle
2 La boîte parallélépipédique
3 Le cube
4 Le cône
Matériel, fiches à photocopier
Bibliographie
Index
|
Permalink : |
http://cdocs.helha.be/pmbgosselies/opac_css/index.php?lvl=notice_display&id=3409 |
|  |